Clinical Review Criteria
Vagus Nerve Stimulation

- Adjunctive Treatment for Partial Onset Epileptic Seizures
- Medical Diagnoses
- Treatment Resistant Depression

NOTICE: Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc., provide these Clinical Review Criteria for internal use by their members and health care providers. The Clinical Review Criteria only apply to Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc. Use of the Clinical Review Criteria or any Kaiser Permanente entity name, logo, trade name, trademark, or service mark for marketing or publicity purposes, including on any website, or in any press release or promotional material, is strictly prohibited.

Kaiser Permanente Clinical Review Criteria are developed to assist in administering plan benefits. These criteria neither offer medical advice nor guarantee coverage. Kaiser Permanente reserves the exclusive right to modify, revoke, suspend or change any or all of these Review Criteria, at Kaiser Permanente’s sole discretion, at any time, with or without notice. Member contracts differ in their benefits. Always consult the patient’s Evidence of Coverage or call Kaiser Permanente Customer Service to determine coverage for a specific medical service.

Criteria
For Medicare Members

<table>
<thead>
<tr>
<th>Source</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Coverage Manuals</td>
<td>None</td>
</tr>
<tr>
<td>National Coverage Determinations (NCD)</td>
<td>Vagus Nerve Stimulation for Treatment of Seizures (160.18)</td>
</tr>
<tr>
<td>Local Coverage Determinations (LCD)</td>
<td>None</td>
</tr>
<tr>
<td>Local Coverage Article</td>
<td>None</td>
</tr>
</tbody>
</table>

For Non-Medicare Members

<table>
<thead>
<tr>
<th>Service</th>
<th>Criteria Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjunctive Treatment for Partial Onset Epileptic Seizures</td>
<td>No medical necessity review is required for this service.</td>
</tr>
<tr>
<td>All other diagnoses</td>
<td>MCG* A-0424. This service is not covered per MCG guidelines.</td>
</tr>
</tbody>
</table>

MCG* manuals are proprietary and cannot be published and/or distributed. However, on an individual member basis, Kaiser Permanente can share a copy of the specific criteria document used to make a utilization management decision. If one of your patients is being reviewed using these criteria, you may request a copy of the criteria by calling the Kaiser Permanente Clinical Review staff at 1-800-289-1363.

The following information was used in the development of this document and is provided as background only. It is provided for historical purposes and does not necessarily reflect the most current published literature. When significant new articles are published that impact treatment option, KPWA will review as needed. This information is not to be used as coverage criteria. Please only refer to the criteria listed above for coverage determinations.

Background
The Cyberonics Vagus Nerve Stimulator (VNS) Therapy System is a device similar in design and function to a cardiac pacemaker. It consists of a constant current pulse generator implanted in the anterior chest wall and a bipolar stimulating electrode that is wrapped around the left vagal nerve in the neck. A magnet controlled by the patient can turn off the device.

In 1985, there were initial animal studies to test VNS, and devices were implanted in humans beginning in 1988. The first clinical application was to treat epilepsy. Research on epilepsy treatment suggested that VNS might reduce dysphoria in some patients. Moreover, VNS has been found to increase levels of a metabolite of serotonin in epilepsy patients, an effect similar to that seen after successful treatment of depression. These findings led to an interest in using VNS for patients with treatment-resistant depression (Goodnick et al., 2001).

In July, 1997, the FDA granted pre-market approval for the Cyberonics VNS device to be used as an adjunctive treatment for medically refractory partial onset seizures in patients over 12 years of age. In July 2005, the FDA approved the device for patients 18 and older with treatment-resistant depression who failed to respond to at least 4
courses of adequate medication or electroconvulsive therapy (ECT).

Evidence and Source Documents

Adjunctive Treatment for Partial Onset Epileptic Seizures

Vagus Nerve Stimulation for Treatment-Resistant Depression

Medical Technology Assessment Committee (MTAC)

Vagal Nerve Stimulation (VNS) as an Adjunctive Treatment for Partial Onset Epileptic Seizures

BACKGROUND
Repetitive stimulation of the vagal nerve has been shown to reduce the frequency of seizures in various animal models of epilepsy. Epilepsy is typically treated with anti-epileptic medications and in some cases surgical resection of the epileptic focus. Despite the efficacy of these treatments, 25-50% of patients with epilepsy continue to experience seizures and/or suffer harms from continued use of anti-epileptic medications. The NeuroCybernetics Prosthesis (NCP) Vagal Nerve Stimulator (VNS) is a device (similar in design and function to a cardiac pacemaker) which consists of a constant current pulse generator implanted subcutaneously in the anterior chest wall and a bipolar stimulating electrode which is wrapped around the left vagal nerve in the neck. A magnet controlled by the patient can initiate stimulation (when the patient senses the onset of a seizure) or can turn off the device depending on how it is placed against the device. The mechanism by which the VNS reduces epileptic seizures is still unknown, however it has been shown that stimulation of the vagal nerve has the ability to affect brain wave activity.

02/10/1999: MTAC REVIEW

Vagal Nerve Stimulation (VNS) as an Adjunctive Treatment for Partial Onset Epileptic Seizures

Evidence Conclusion: Recently published evidence from a large, well designed, multicenter trial of 254 patients randomized to high or low Vagal nerve stimulation demonstrates that the use of VNS in the treatment of medically refractory patients reduces seizure frequency by approximately 28% compared to baseline and 13% compared to an active control group receiving low stimulation. This translates into an average reduction of 3 seizures per week. Adverse events such as voice alteration, cough and pharyngitis during stimulation are reported to occur in 25-60 percent of subjects but are generally well tolerated. Patients receiving high VNS also reported significant improvement in their perception of well-being. A randomized controlled trial of 114 patients reports a similar beneficial effect of VNS. Data from an open extension trial of the first 67 patients exiting the RCT demonstrates that all patients chose to either continue high stimulation or switch from low to high stimulation for up to 15 months. Four out of five patients in this group demonstrated continuing clinically significant reductions in seizure frequency over 15 months with 5 drop-outs (8%) due to lack of efficacy and no drop-outs due to side effects from stimulation. **Articles:** Handforth, A et al. Vagus Nerve Stimulation Therapy for Partial Onset Seizures: A Randomized Active-Control Trial. *Neurology*, 1998; 5:48-55 See **Evidence Table**. The Vagus Nerve Stimulation Group, A Randomized Controlled Trial of Chronic Vagus Nerve Stimulation for Treatment of Medically Intractable Seizures. *Neurology*, 1995; 45:224-230. See **Evidence Table**. Vagus Nerve Stimulation for Treatment of Partial Seizures: 3. Long-Term Follow-Up on First 67 patients exiting a Controlled Study. *Epilepsia*, 1994;35:637-643. See **Evidence Table**.

The use of the NeuroCybernetics Prosthesis (NCP) Vagal Nerve Stimulator (VNS) for treating patients with medically refractory partial onset seizures has been approved by the FDA and therefore meets Kaiser Permanente Medical Technology Assessment Criteria.

Vagus Nerve Stimulation for Treatment-Resistant Depression

BACKGROUND
The Cyberonics Vagus Nerve Stimulator (VNS) Therapy System is a device similar in design and function to a cardiac pacemaker. It consists of a constant current pulse generator implanted in the anterior chest wall and a bipolar stimulating electrode that is wrapped around the left vagal nerve in the neck. A magnet controlled by the patient can turn off the device.

In 1985, there were initial animal studies to test VNS, and devices were implanted in humans beginning in 1988. The first clinical application was to treat epilepsy. Research on epilepsy treatment suggested that VNS might reduce dysphoria in some patients. Moreover, VNS has been found to increase levels of a metabolite of serotonin in epilepsy patients, an effect similar to that seen after successful treatment of depression. These findings led to an interest in using VNS for patients with treatment-resistant depression (Goodnick et al., 2001).

In July, 1997, the FDA granted pre-market approval for the Cyberonics VNS device to be used as an adjunctive treatment for medically refractory partial onset seizures in patients over 12 years of age. In July 2005, the FDA approved the device for patients 18 and older with treatment-resistant depression who failed to respond to at least 4 courses of adequate medication or electroconvulsive therapy (ECT). VNS passed MTAC evaluation criteria in 1999.
for epilepsy. In 2005, it was reviewed for treatment-resistant depression and failed MTAC evaluation criteria. At that time, all of the major studies were conducted by the same group of researchers (A. John Rush and colleagues) with links to the device manufacturer. There was one published RCT (Rush et al., 2005), with negative findings. A post-hoc sub-group analysis of the Rush RCT with a historical control group (George et al., 2005), a design subject to bias, found a benefit of the treatment for a selected group of patients. FDA approval of the VNS device for depression remains controversial. Citing a lack of efficacy data and concerns about safety, an FDA review team decided not to approve the new indication for the Cyberonics device. Instead, the team recommended additional data from RCTs. The Director of the FDA's Center for Devices and Radiological Health (CDRH) overruled the team and granted pre-market approval. The Director agreed with Cyberonics researchers that it would be unethical to conduct a blinded treatment study with patients with major depression. The FDA approval in 2005 included a request to Cyberonics for additional post-market controlled studies (Shuchman, 2007).

12/05/2005: MTAC REVIEW

Vagus Nerve Stimulation for Treatment-Resistant Depression

Evidence Conclusion: There is insufficient evidence that VNS is effective therapy for treatment-resistant depression. All of the major studies were conducted by the same group of researchers. This research team has close financial links with the device manufacturer which could bias study methodology, analysis and/or results reporting. The single published RCT (Rush et al., 2005) had negative findings. There was not a statistically significant between-group difference in the primary outcome, 3-month HAM-D response, between groups receiving active and placebo VNS therapy. A subsequent non-randomized study (George et al., 2005) followed-up a portion of the RCT study patients, and compared findings to a group of depressed patients who were participating in a different study. The George study found a significant difference in the primary outcome, change in the Inventory of Depressive Symptomatology (IDS) score, favoring the VNS therapy group. The study is subject to selection bias due to the use of different patient populations, and the exclusion of patients who responded to sham treatment in the RCT. It is also subject to observation biases because patients did not receive a consistent intervention e.g. those in the VNS group had different lengths of treatment, and possible bias in the selection of the primary outcome (IDS score was the only significant efficacy outcome in the RCT). A limitation of all of the published studies was that the eligibility for participation did not match the FDA definition of treatment-resistant depression. The studies required patients to have failed a minimum of 2 courses of medication whereas the FDA approved VNS therapy for depressed patients who have failed at least 4 treatments.

Articles: The published empirical studies on VNS therapy for depression were conducted by a single research group with close links to the manufacturer, A. John Rush and colleagues. As described in the recent BlueCross BlueShield review (2005), these studies were: D01: Case series with n=50 patients, D02: 3-month randomized controlled trial with n=233, D02 extension arm. 12 month follow-up of selected patients who participated in study D02, D04: Case series of patients not receiving VNS. This study was used to form a comparison group to the 12-month extension of study D02. Articles critically appraised were: Publication reporting the results of the RCT, D02: Rush AJ, Marangell LB, Sackeim HA et al. Vagus nerve stimulation for treatment-resistant depression: A Publication comparing 12-month outcomes in the D02 extension and the D04 comparison group: George MS, Rush AJ, Marangell LB et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 2005; 58: 364-373. See Evidence Table

The use of Vagus nerve Stimulation in the treatment of treatment-resistant depression does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

06/01/2009: MTAC REVIEW

Vagus Nerve Stimulation for Treatment-Resistant Depression

Evidence Conclusion: Conclusions of the 2005 MTAC review were as follows: There is insufficient evidence that VNS is an effective therapy for treatment-resistant depression. All of the major studies were conducted by the same group of researchers that had close financial links with the device manufacturer. The single published RCT (Rush et al., 2005) had negative findings. There was not a statistically significant between-group difference in the primary outcome, 3-month HAM-D response, between groups receiving active and placebo VNS therapy. A subsequent non-randomized study (George et al., 2005) followed-up a portion of the RCT study patients, and compared findings to a group of depressed patients who were participating in a different study. The George study, which was subject to selection and observation biases, found a significant difference in the primary outcome, change in the Inventory of Depressive Symptomatology (IDS) score, favoring the VNS therapy group. As of May 2009, there is still insufficient evidence to determine whether VNS is effective for depressed patients who have failed antidepressant treatment. There were no additional RCTs or non-randomized comparative studies. A new case series (Schlaepfer) with 74 patients recruited from 9 sites in Europe found a 34% response rate at 3 months (end of active treatment period), which increased to
47% at the 12 month follow-up. The Schlaepfer case series represents a low grade of evidence. There was no comparison group, so response with a different treatment or no treatment is not known. Also, patients were not blinded, and they had regular clinic visits, both of which could affect responses to a subjective outcome measure like the HAMD.

Articles: The Pubmed search yielded 13 articles. Only 9 of these were actually on depression (the rest addressed epilepsy, Alzheimer’s disease or rapid-cycling bipolar disorder). Of the 9 articles on depression, 3 were reviews or opinion pieces, 3 were basic research on brain changes during VNS and 3 were empirical studies. Two of the 3 empirical studies were subanalyses of the Rush et al. (2005) RCT. On closer inspection, neither of these analyses was eligible for MTAC review. The Nierenberg et al. (2008) study did not compare outcomes associated with active vs. sham VNS; instead the investigators compared the effects of VNS on bipolar vs. unipolar depressed participants within the Rush RCT. The other sub-analysis, Burke et al. (2006) evaluated the effect of concomitant VNS and electroconvulsive therapy (ECT) in the 14 participants in the Rush RCT who received both treatments. This was a descriptive analysis of a small number of individuals and does not aid our understanding of the effectiveness of VNS. The third new empirical study was a case series (n=74) conducted in Europe. This study was critically appraised. A Blue Cross Blue Shield technology assessment report, used for the first MTAC review, has not been updated since August, 2006. No additional published articles were identified on the Cyberonics website. The citation for the new European study is as follows: Schlaepfer TE, Frick C, Zobel A et al. Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 2008; 38: 651-661. See [Evidence Table](#).

The use of Vagus Nerve Stimulation in the treatment of treatment-resistant depression does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

<table>
<thead>
<tr>
<th>Date Created</th>
<th>Date Reviewed</th>
<th>Date Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/08/1999</td>
<td>07/06/2010^MDCRPC, 05/03/2011^MDCRPC, 03/06/2012^MDCRPC, 01/08/2013^MDCRPC, 11/05/2013^MPC, 09/02/2014^MPC, 07/07/2015^MPC, 05/03/2016^MPC, 03/07/2017^MPC, 01/09/2018^MPC, 11/06/2018^MPC</td>
<td>07/13/2009</td>
</tr>
</tbody>
</table>

^MDCRPC Medical Director Clinical Review and Policy Committee
^MPC Medical Policy Committee

Codes

CPT: 61885, 61886, 61888, 63688, 64553, 64568, 64569