Clinical Review Criteria

Neurofeedback for ADHD (EEG Biofeedback)

Group Health Clinical Review Criteria are developed to assist in administering plan benefits. These criteria neither offer medical advice nor guarantee coverage. Group Health reserves the exclusive right to modify, revoke, suspend or change any or all of these Review Criteria, at Group Health's sole discretion, at any time, with or without notice. Member contracts differ in their benefits. Always consult the patient's Medical Coverage Agreement or call Group Health Customer Service to determine coverage for a specific medical service.

Criteria

For Medicare Members
See the National Coverage Determination (NCD) for Biofeedback Therapy (30.1)

For Non-Medicare Members
There is insufficient evidence in the published medical literature to show that this service/therapy is as safe as standard services/therapies and/or provides better long-term outcomes than current standard services/therapies.

The following information was used in the development of this document and is provided as background only. It is not to be used as coverage criteria. Please only refer to the criteria listed above for coverage determinations.

Background

Attention Deficit Hyperactivity Disorder (ADHD) is a common chronic neurobehavioral condition affecting approximately 5% of children worldwide. A child with ADHD may present as: 1) predominantly hyperactive, 2) predominantly inattentive, or 3) both hyperactive and inattentive. ADHD is often accompanied by impaired social adjustment, academic problems, and lower adaptive functioning in major life activities which may persist to adolescence and adulthood (Benner-Davis 2007, Gevensleben 2009, Lansbergen 2011).

Medication, particularly psychostimulants, is the primary treatment for ADHD. Psychostimulants work quickly, improve attention, and reduce hyperactivity and impulsivity in about 70% of all children. However, their effect on academic achievement, family relation, and social skills is small. There are also some concerns regarding their side effects, and their long-term benefits have not been established. Behavioral therapy has been shown to reduce ADHD symptoms, but may not be sufficiently effective especially in terms of generalization and long-term effects (Leins 2007, Gevensleben 2009, Lansbergen 2011).

In searching for additional or alternative treatments for children with ADHD, neurofeedback (NF) emerged as a promising option. NF is a type of biofeedback that uses electroencephalography (EEG) to provide a signal that can be used by a person to receive feedback about brain activity. It is based on the rationale that there is a relationship between surface EEG and the underlying thalamocortical mechanism responsible for its rhythms and frequency modulations. Lubar was the first to report on EEG and behavioral changes in a hyperkinetic child. He explained that ADHD children differ from others in that their brain waves tend to be of larger amplitude. Specifically, the EEG shows excess theta activity along with lower amounts of beta activity. This pattern of brain wave activity usually indicates a sleep or day dreaming state, rather than an alert and focused state. The goal of EEG biofeedback training is to alter these abnormal brain waves by decreasing theta waves, while
simultaneously increasing beta waves (i.e. theta suppression/beta enhancement). This would potentially help the child acquire self-control over certain brain activity patterns, derive self-regulation strategies, and apply the gained self-regulation skills in daily life (Lubar 1976, Lubar 1991, Bakhshayesh 2011).

In EEG biofeedback training, the therapist explains to the child the connection between what is happening in his/her cortex and what is recorded on the EEG, and helps him/her learn how to gain control over the brain activity patterns. The EEG biofeedback equipment is connected to the individual with sensors that are placed on the scalp and ears. Once connected, the brainwave activity can be observed on a computer monitor. Individuals are then taught to play computerized games using their brainwave activity. Changes in the individual's brainwave activity are then fed back to the individual through visual and/or auditory information by the computer. During a typical 45-minute session, the child is seated in front of a computer, electrodes are connected to his head, and then a therapist starts up a videogame or movie on the child's screen and monitors his brain waves on another screen. The child then locks his eyes on the action, concentrating on sending the kind of brain waves that will keep a virtual airplane flying, or perhaps a favorite movie rolling. If his attention wanders or he begins to fidget, the plane slows or the movie screen darkens, and the therapist encourages him to regain focus using techniques such as slow, deep breathing. Children may also practice maintaining learned brainwave states when engaged in school- or work-related tasks (Gevensleben 2009).

Medical Technology Assessment Committee (MTAC)

<table>
<thead>
<tr>
<th>Date</th>
<th>Evidence Conclusion</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/2011</td>
<td>A number of small randomized and nonrandomized controlled trials included in Arns and colleagues' meta-analysis (evidence table 1) and the pooled results of available data indicate that NF may have some beneficial effects on a number of ADHD measures. However, when compared with stimulant therapy, NF did not prove to have an equivalent or superior effect on ADHD core symptoms. None of the studies monitored potential adverse effects of NF. The small study sizes, their short duration, lack of a valid control group, mixed and multiple interventions used, lack of double-blinding, additional time spent with the therapists for NF, as well as other study methodological limitations make it hard to determine the efficacy of the neurofeedback used alone or in addition to other interventions for the treatment of children with ADHD. Gevensleben and colleagues’ trial (evidence table 2) conducted by a group of researchers in a university hospital in Germany, compared NF training to computerized attention skills training. This may be considered as a more valid comparison as it controls for therapist time and attention training. The primary endpoint was improvement in attention and reduced hyperactivity as rated by the parents. No measures of children’s academic functioning or classroom performance were collected. The results of the trial showed that symptoms improved in both groups; however, the score of the primary outcome measure (parents’ rating of FBB-HKS [a German rating scale]) was significantly higher in children in the NF group. The trial was randomized and controlled, but was not blinded, and the NF training program was developed by the study group. After the training period 18% of the children were started on a medication. Six months follow-up data, available for only two thirds of the participants, showed that the behavioral improvements were maintained at 6 months, but the difference between the two interventions did not reach a statistically significant level. The use of Neurofeedback for ADHD does not meet the Group Health Medical Technology Assessment Criteria.</td>
<td>The use of Neurofeedback for ADHD does not meet the Group Health Medical Technology Assessment Criteria.</td>
</tr>
</tbody>
</table>
investigators attributed the lack of significant difference to insufficient statistical power due to the smaller number of children with follow-up data. They authors concluded that NF training may help some children, but more research is needed to replicate the findings and identify which children with ADHD are more likely to benefit from NF training.

Well conducted randomized trials with a sham neurofeedback control, double-blinding, and long term follow-up are needed to establish the efficacy and safety of neurofeedback in improving the core symptoms of ADHD.

Evidence/ Source Documents

<table>
<thead>
<tr>
<th>Date of Literature Search</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/17/2011</td>
<td>The search revealed one meta-analysis on the efficacy of neurofeedback treatment in ADHD and a number of RCTs that were included in the meta-analysis. Three small RCTs published after the meta-analysis, as well as a report on 6 months follow-up of an earlier RCT were also identified. The meta-analysis as well as the largest trial, which had a more valid design and longer follow-up, were selected for critical appraisal. Arns M, de Ridder S, Strehl U, et al. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity; a meta-analysis. Clin EEG Neurosci 2009;40:180-189. See Evidence Table Gevensleben H, Holl B, Albrecht B, et al. Is neurofeedback an efficacious treatment for ADHD? A randomized controlled trial. J Child Psychol Psychiatry. 2009;50:780-789. See Evidence Table Gevensleben H, Holl B, Albrecht B, et al. Neurofeedback training in children with ADHD: 6-month follow-up of a randomized controlled trial. Eur Child Adolesc Psychiatry 2010;19:715-724. See Evidence Table</td>
</tr>
</tbody>
</table>

Creation Date	**Review Dates**	**Date Last Revised**

MDCRPC Medical Director Clinical Review and Policy Committee

MPC Medical Policy Committee

© Group Health Cooperative. All Rights Reserved.