Clinical Review Criteria

Cardiac CT – Screening and Calcium score
- Electron Beam Computed Tomography (EBCT)
- Helical or Spiral Computed Tomography
- Multidetector Computed Tomography (MDCT)
- Ultrafast Computed Tomography

NOTICE: Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc., provide these Clinical Review Criteria for internal use by their members and health care providers. The Clinical Review Criteria only apply to Kaiser Foundation Health Plan of Washington and Kaiser Foundation Health Plan of Washington Options, Inc. Use of the Clinical Review Criteria or any Kaiser Permanente entity name, logo, trade name, trademark, or service mark for marketing or publicity purposes, including on any website, or in any press release or promotional material, is strictly prohibited.

Kaiser Permanente Clinical Review Criteria are developed to assist in administering plan benefits. These criteria neither offer medical advice nor guarantee coverage. Kaiser Permanente reserves the exclusive right to modify, revoke, suspend or change any or all of these Review Criteria, at Kaiser Permanente’s sole discretion, at any time, with or without notice. Member contracts differ in their benefits. Always consult the patient’s Medical Coverage Agreement or call Kaiser Permanente Customer Service to determine coverage for a specific medical service.

Criteria

For Medicare Members

<table>
<thead>
<tr>
<th>Source</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Coverage Manuals</td>
<td>None</td>
</tr>
<tr>
<td>National Coverage Determinations (NCD)</td>
<td>None</td>
</tr>
<tr>
<td>Local Coverage Determinations (LCD)</td>
<td>05/13/2016 Noridian retired LCD Multidetector Computed Tomography of the Heart and Great Vessels (L34137)</td>
</tr>
<tr>
<td></td>
<td>These services still need to meet medical necessity as outlined in the LCD and will require review. LCDs are retired due to lack of evidence of current problems, or in some cases because the material is addressed by a National Coverage Decision (NCD), a coverage provision in a CMS interpretative manual or an article. Most LCDs are not retired because they are incorrect. The guidance in the retired LCD will be used in assessing medical necessity.</td>
</tr>
</tbody>
</table>

Local Coverage Articles | None

For Non-Medicare Members

Ultrafast CT (S8092) and CT Cardiography in the Screening and Diagnosis of Coronary Artery Disease (CAD) (CPT 75571)

There is insufficient evidence in the published medical literature to show that this service/therapy is as safe as standard services/therapies and/or provides better long-term outcomes than current standard services/therapies.

The following information was used in the development of this document and is provided as background only. It is not to be used as coverage criteria. Please only refer to the criteria listed above for coverage determinations.

Background

Coronary heart disease (CHD) remains the leading cause of death among men and women in the United States. It is valuable to detect coronary atherosclerosis early in its course, and try to alter its progression by modifying certain identifiable risk factors. The earliest detectable lesion of coronary atherosclerosis is a fatty streak, followed by crescent shaped lipid plaques, which may rupture and produce either progressive stenosis or sudden occlusion with myocardial infarction. It was previously thought that coronary artery calcification was the late result of end stage plaque degeneration. Now it is believed that calcium is present in all stages of plaque formation. Coronary artery calcification occurs in small amounts in the early lesions of atherosclerosis that appear in the second and third decades of life but is found more frequently in advanced lesions in older age (Janowitz 1993). Coronary artery calcium increases with increasing age in men, while women may experience accelerated calcification after menopause (Allison 2004).
The relation of arterial calcification to the probability of plaque rupture is unknown. Some investigators postulate that calcification may actively contribute to the susceptibility of plaque rupture and subsequent events. While others believe that calcification may reflect stabilization and maturation of the plaque that would lead to fewer myocardial infarctions and CHD deaths (Lee 2002). Beckman 2001, reported that although radiographically detected coronary artery calcium can provide an estimate of total coronary plaque burden, calcium does not concentrate exclusively at sites with severe coronary artery stenosis due to arterial remodeling. Other researchers indicated that ultrafast scans cannot detect all calcium and that molecular calcium may go unnoticed. Thus calcium detected by ultrafast scans may represent only the tip of the iceberg (Rumberger 1996). Despite that, some investigators believe coronary artery calcium (CAC) detection may be able to globally define a patient's risk of CHD events.

Now that some believe that calcification can be used as a marker of the atherosclerotic process, and because calcific deposits are radio-opaque, numerous radiographic techniques have been used in the search for a noninvasive screening test for coronary artery disease. Fluoroscopy was used for decades to detect coronary artery calcium. However, its routine use for identifying patients with coronary artery disease is limited due to its low sensitivity to detect small amounts of coronary calcium that can be observed pathologically in complex atherosclerotic plaques. Conventional computed tomography (CT) have an advantage over fluoroscopy in its improved resolution, which is limited however when moving structures are imaged. This limitation has been overcome by the electron beam computed tomography (EBCT), and multidetector computed tomography (MDCT). Both technologies yield thin slice CT imaging using fast scan speeds that reduce motion artifact. 30-40 adjacent axial scans are usually obtained. The fast time scan allows the entire heart to be imaged over one or two breath holds. Images can be reconstructed to form three-dimensional or cross-sectional images. There are three methods for calcium quantification and scoring: The Agaston method, the volumetric method, and quantification of calcium mass. Agaston method is the most commonly used and is obtained by the summation of areas of the calcified lesions multiplied by a scaling cofactor; an Agaston score of zero indicates absence of coronary calcium, 1-99 is considered low, 10-400 is intermediate, and 400 high (Sanz 2006). Calcium scores can be calculated for a coronary artery segment, a coronary artery, or summed for the whole coronary system.

Ultrafast CT scanners became commercially available in 1983, before the first study of their use was published in 1989. In the 1990s, another form of CT, the helical or spiral computed tomography has been developed. In helical tomography, continuous scanning is performed in combination with a continuous table feed. Thus, the x-ray beam traces a spiral path through the patient. The entire heart can be imaged with 3 mm non-overlapping slices, within one breath hold (30 sec). The initial goal of using cardiac computed tomography was to identify patients at risk of coronary artery disease based on the amount of calcium present. However, in the past 5-10 years these ultrafast scans have been used to: 1) Assist in CHD risk assessment in asymptomatic individuals, and, 2) To assess the likelihood of the presence of CHD in patients who present with atypical symptoms that could be consistent with myocardial ischemia.

The EBCT scanners currently used are produced by GE Imatron, South San Francisco California. They were approved by the FDA as Class II devices.

The use of EBCT for CAC scoring was reviewed by MTAC in 2002 and 2004, and did not meet its evaluation criteria. It is being re-reviewed due to the recent publications of studies with clinically important outcomes.

Medical Technology Assessment Committee (MTAC)

Ultrafast CT in the Screening and Diagnosis of CAD

02/11/2002: MTAC REVIEW

Evidence Conclusion: There is insufficient published evidence to determine the value of Ultrafast CT as a screening test for coronary artery disease among asymptomatic patients. In the studies reviewed, ultrafast CT and angiography were done among patients because of suspected coronary artery disease. The prevalence of CAD in these studies was high and it may not be appropriate to extrapolate these results to scans done in the population at large, or those done for screening purposes. The studies reviewed show that ultrafast CT scanning had a high sensitivity and low specificity in detecting coronary artery disease among the participants. The sensitivity increased with age and was highest for symptomatic patients older than 50 years. The specificity on the other hand, increased with the number of calcified vessels and was highest among patients with 4-vessel calcification. The majority of studies did not address clinical end-points, as their primary outcome. Detrano, et al (1996) however, followed-up the patients for a mean of 30 months, to determine the relative prognostic value of coronary calcification for predicting CHD events among symptomatic patients. They found that cardiac events and deaths tended to be more frequent in the higher quartiles of calcium score. In conclusion, the results of these studies
indicate that in a population where CAD is more prevalent, the absence of coronary calcification is more helpful in ruling out CAD than is the detection of calcium in confirming the presence of CAD. Ultrafast CT seems promising, but as yet, there is no evidence that it may substitute angiography, but can be helpful in excluding or increasing the likelihood of significant CAD in certain situations.

Articles: The search yielded 39 articles, many of which were review articles, opinion pieces, or dealt with technical aspects of the scan. The search did not reveal any study that evaluated ultrafast scanning as a screening test for coronary heart disease. There were four studies that compared the Ultrafast CT scan with angiography and a few others that did not use a defined gold standard for comparison. There was only one study on the newer helical CT scan. The two studies with the stronger methodology, and larger sample sizes were selected for critical appraisal. Broderick’s study that evaluated the performance of the helical CT scan was also reviewed. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. A multicenter study. *Circulation* 1996;93:898-904. See Evidence Table. Detrano R, Hsiai T, Wang S, et al. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. *J Am Coll Cardiol* 1996;27:285-90. See Evidence Table. Broderick LS, Shemesh J, Wilensky RL, et al. Measurement of coronary artery calcium with dual-slice helical CT compared with coronary angiography: Evaluation of CT scoring methods, observer variations, and reproducibility. *AJR* 1996;167:439-444. See Evidence Table.

The use of ultrafast CT in the screening and diagnosis of CAD does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

12/08/2004: MTAC REVIEW

Ultrafast CT in the Screening and Diagnosis of CAD

Evidence Conclusion: A screening test for preclinical coronary artery disease among asymptomatic individuals, and a diagnostic test for coronary artery disease among symptomatic patients. Use of EBCT for coronary artery disease screening among asymptomatic individuals: There is insufficient published evidence to determine the value of EBCT (Ultrafast CT) as a screening test for coronary artery disease among asymptomatic individuals. Ideally, a screening test should be highly sensitive in detecting previously undiagnosed disease, and should lead to changes in management that improves outcomes. The meta-analysis and observational studies reviewed evaluated EBCT coronary artery calcium as a risk predictor of future coronary events among asymptomatic individuals. These studies suggest that coronary artery calcium detected by EBCT may be an independent predictor for coronary events, and may add to the information provided by the Framingham risk score. However, these studies had some threats to validity that may limit generalization of the results. The majority is office-based and included self-referred individuals or others at high risk referred by their primary care physicians for further evaluation. Risk factors were self-reported and not measured in more than one study. Different techniques and scans were used, and there was no established cut-off level for calcium scores. The endpoints included revascularization in several trials, which could have been performed at a higher rate based on the results of the study. The endpoint in one of the studies was all-cause mortality that might be due to other causes than coronary atherosclerotic diseases. None of these observational studies examined the influence of detecting coronary artery calcification on the management of the individuals, the health benefits, or effect on outcome. There is no evidence that more effective therapy or management could be provided by evaluating CAC score beyond that provided based on FRS. A recent RCT showed that the detection of coronary artery calcium among asymptomatic individuals was not associated with behavior modification or reduction of their cardiac risk scores. This RCT also had its limitations. Use of EBCT as a diagnostic test for coronary artery disease among symptomatic patients: The studies reviewed show that compared to coronary angiography as a gold standard; EBCT scanning had a high sensitivity and low specificity in detecting coronary artery disease among symptomatic patients. The sensitivity ranged from 81% to 99% among the studies reviewed in the meta-analysis, and the more recent study. The sensitivity was inversely related to the calcium score cutoff points. It was highest at a calcium score 0-10 which on the other hand had a specificity as low as 28%, i.e. high false positives which would be associated with further investigations that might be unnecessary. The studies were conducted among symptomatic patients with a high prevalence of coronary disease, and there is a potential of overestimation of the sensitivity, and positive predictive value, which might limit generalization of the results.

Articles: The search yielded 39 articles, many of which were review articles, opinion pieces, or dealt with technical aspects of the scan. The search did not reveal any study that evaluated ultrafast scanning as a screening test for coronary heart disease. There were four studies that compared the Ultrafast CT scan with angiography and a few others that did not use a defined gold standard for comparison. There was only one study on the newer helical CT scan. The two studies with the stronger methodology, and larger sample sizes were selected for critical appraisal. Broderick’s study that evaluated the performance of the helical CT scan was also reviewed. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. A multicenter study. *Circulation* 1996;93:898-904. See Evidence Table. Detrano R, Hsiai T, Wang S, et al. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary
The use of ultrafast CT in the screening and diagnosis of CAD does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

04/02/2007: MTAC REVIEW
Ultrafast CT in the Screening and Diagnosis of CAD

Evidence Conclusion: This report focuses on the use of electron bean computed tomography for detecting calcium deposits in coronary arteries as 1. A screening test for preclinical coronary artery disease among asymptomatic individuals, and 2. A diagnostic test for coronary artery disease among symptomatic patients. Use of EBCT for coronary artery disease screening among asymptomatic individuals; Ideally a screening test for predicting outcomes should not only prove to independently contribute to risk stratification, but also to provide further prognostic information beyond and above the traditional risk factors i.e. in this case, the Framingham Risk Stratification. Constructing the Receiver Operator Characteristic (ROC) curves and measuring the Area Under the ROC curve (AUC) would determine if a new marker or test has an additive benefit. An ideal screening test would also lead to changes in the management that will improve health outcomes e.g. fewer events, extended life or better quality of life. Fletcher’s meta-analysis (2004), reviewed for the previous update, offered some support that there is a linear relationship between CAC and CHD events, but the analysis did not address whether CAC adds any incremental value to Framingham Risk Score (FRS) for CHD risk prediction. Greenland and colleagues (2007) pooled the results of 6 observational studies published after Fletcher’s meta-analysis. There was some heterogeneity between the studies in the assessment of risk factors, cut-off levels used for calcium scores, as well as in the endpoints. The latter included revascularization in several trials, which could have been performed at a higher rate based on the results of the scan. None of the studies included in the meta-analysis examined the influence of detecting coronary artery calcification on the management of the individuals, the health benefits, or effect on outcome. The pooled results of the studies in the meta-analysis showed that patients with any measurable calcium were at a significantly higher risk compared to those with a low-risk CAC (using a score of 0) over a 3-5 years period of observation. This analysis also showed that there was an incremental relationship between CAC and CHD risk. The authors however did not discuss if adding CAC scoring to the traditional factors would significantly increase the AUC. Arad and colleagues published two articles on the St Francis Health Study (Arad, Goodman 2005, and Arad, Spadaro 2005). The first was a prospective cohort study that investigated the accuracy of CAC scores in predicting atherosclerotic cardiovascular disease (ASCVD) events independent of standard risk factors. The second article reports on the results of an RCT embedded in the cohort study. This RCT investigated whether lipid-lowering therapy and antioxidants retard the progression of coronary calcification and prevent ASCVD events. The St Francis Health Study enrolled 4,903 mainly White, healthy men and women 50-70 years old. All participants underwent EBCT but only a subset (n=1,357) with CAC score >80th percentile for age and gender, also underwent risk factor assessment. Participants were followed up for an average of 4.3 years for a composite outcome of coronary death, nonfatal MI, surgical or percutaneous coronary revascularization, nonhemorrhagic stroke and peripheral vascular surgery. A multivariate regression analysis showed that CAC scoring predicted CAD events independent of standard risk factors, and that it was strongly predicted by age, male gender, and family history of premature coronary disease. The Receiver Operator Curve (ROC) showed that CAC score predicted CAD events more accurately than Framingham risk stratification (AUC= 0.79 vs. 0.68). It has to be noted however that this comparison was made only for participants with the highest percentiles of CAC, and that this study included all ASCVD outcomes while FRS predicts only the hard CHD outcomes. The majority of the observed events in this study were cardiovascular procedures rather than the traditional cardiac events. One other limitation of the study was low participation rate as only 2% of the eligible subjects we enrolled in the study. The RCT embedded in that study (Arad, Spadaro 2005) randomized 1,005 participants, with CAC score >80th percentile for age and gender, to receive a combination of atorvastatin, vitamin C, and vitamin E or a placebo. All participants in the two groups also received aspirin 80 mg daily. After 4.3 years of follow-up, active treatment group showed nonsignificant reduction in the primary or secondary outcomes. The results also showed no significant change in the progression of CAC. The lack of significant difference in ASCVD events might be due to the small sample size, short follow-up duration, and /or the administration of aspirin to the control as well as the active therapy group. Use of EBCT as a diagnostic test for coronary artery disease among symptomatic patients: There is no new published evidence on the use of coronary calcium scoring as a diagnostic test for CAD. The studies reviewed earlier for the last update showed that compared to coronary angiography as a gold standard; EBCT scanning had a high sensitivity and low specificity in detecting coronary artery disease among symptomatic patients. The sensitivity ranged from 81% to 99% among the studies and was inversely related to the calcium score cutoff points. It was highest at a calcium score 0-10 which on the other hand had a specificity as low as 28%, i.e. high false positives which would be associated with further investigations that might be unnecessary. The
studies were conducted among symptomatic patients with a high prevalence of coronary disease, and there is a potential of overestimation of the sensitivity, and positive predictive value, which might limit generalization of the results. In conclusion: There is some evidence that CAC may add a prognostic incremental value to Framingham risk score among selected asymptomatic individuals. Indirect evidence suggests that asymptomatic individuals at intermediate risk might potentially benefit from adding CAC to the risk assessment. The majority of the participants in the studies reviewed were Caucasians which may limit generalization of the results. The studies do not provide an optimal coronary calcium threshold. There is no single cutoff value that defines a high score. The coronary calcification differs according to age, sex, and race. There is no evidence to date that CAC scoring would result in an intervention that would improve CHD related health outcomes among individuals at an increased risk for CHD. The test results may lead to unnecessary invasive procedures, or overtreatment in some patients.

Articles: The search yielded around 50 articles. Many were review articles, opinion pieces, or dealt with technical aspects of the scan. Use of EBCT for coronary artery disease screening:

The search identified a recent meta-analysis of observational studies (Greenland 2007) and several prospective cohort studies that evaluated EBCT coronary artery calcium (CAC) score as a risk marker predicting the likelihood of future coronary events among asymptomatic patients. It also revealed two articles on the St. Francis Heart Study (Arad, Goodman 2005, and Arad, Spadaro 2005). The first reported on the prospective cohort study, and the second on the RCT embedded in the cohort. The meta-analysis and the two articles on the St. Francis Heart Study were selected for critical appraisal. Use of EBCT for coronary artery disease diagnosis:

The search did not reveal any newly published large valid study on the use of CAC scoring in the detection of coronary artery stenosis among symptomatic patients. The following articles were critically appraised:

The use of EBCT in the treatment of coronary artery calcium scoring does not meet the Kaiser Permanente Medical Technology Assessment Criteria.

<table>
<thead>
<tr>
<th>Date Created</th>
<th>Date Reviewed</th>
<th>Date Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/11/2002</td>
<td>Established annual review for Medicare criteria 05/03/2011^MDCRPC, 09/06/2011^MDCRPC, 07/03/2011^MDCRPC, 05/07/2013^MDCRPC, 06/04/2013^MDCRPC, 03/04/2014^MDCRPC, 01/06/2015^MPC, 11/03/2015^MPC, 09/06/2016^MPC, 07/11/2017^MPC</td>
<td>09/06/2016</td>
</tr>
</tbody>
</table>

^MDCRPC Medical Director Clinical Review and Policy Committee
^MPC Medical Policy Committee

<table>
<thead>
<tr>
<th>Revision History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2015</td>
<td>Revised LCD Multidetector Computed Tomography of the Heart and Great Vessels (L34137)</td>
</tr>
<tr>
<td>09/06/2016</td>
<td>Adopted retired LCD policy for Medicare members</td>
</tr>
</tbody>
</table>

Codes

CPT: 75571, S8092