Clinical Review Criteria

Artificial Pancreas

- Sensor-augmented insulin pumps

Kaiser Permanente Clinical Review Criteria are developed to assist in administering plan benefits. These criteria neither offer medical advice nor guarantee coverage. Kaiser Permanente reserves the exclusive right to modify, revoke, suspend or change any or all of these Review Criteria, at Kaiser Permanente's sole discretion, at any time, with or without notice. Member contracts differ in their benefits. Always consult the patient's Medical Coverage Agreement or call Kaiser Permanente Customer Service to determine coverage for a specific medical service.

Criteria

For Medicare Members

<table>
<thead>
<tr>
<th>Source</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Coverage Manuals</td>
<td>None</td>
</tr>
<tr>
<td>National Coverage Determinations (NCD)</td>
<td>Infusion Pumps (280.14)</td>
</tr>
<tr>
<td></td>
<td>Closed-Loop Blood Glucose Control Device (CBGCD) (40.3).</td>
</tr>
<tr>
<td>Local Coverage Determinations (LCD)</td>
<td>External Infusion Pumps (L11570)</td>
</tr>
<tr>
<td></td>
<td>Glucose Monitors (L33822)</td>
</tr>
<tr>
<td>Local Coverage Article</td>
<td>None</td>
</tr>
</tbody>
</table>

For Non-Medicare Members

For artificial pancreas coverage the member must meet both continuous subcutaneous insulin infusion (CSII) pumps and the continuous glucose monitor criteria, and must meet ONE of the following:

1. Type 1 diabetes for at least one year and 4 or more insulin injections per day; OR
2. Type II diabetes with documentation of undetectable endogenous insulin production (undetectable C-peptide level). This is measured by taking a fasting C-peptide level (at a time when the blood glucose is over 200mg/dl). This requires that a blood glucose level be done at the same time as the fasting C-peptide level.

The following information was used in the development of this document and is provided as background only. It is not to be used as coverage criteria. Please only refer to the criteria listed above for coverage determinations.

Background

Diabetes mellitus is a metabolic disorder resulting from a defect in insulin secretion, insulin action or both. More specifically, in type 1 diabetes, the pancreas is unable to produce insulin which results in increased blood glucose levels, and ultimately, leads to complications which may affect the eyes, kidneys, nerves, heart and blood vessels. As a result, an essential part of diabetes management is to maintain blood glucose levels to as near normal as possible over all hours of the day. Implementation of this approach requires the individual to be capable of and committed to a day-to-day medical program. It requires ongoing compliance with multiple daily glucose measurements accompanied by appropriate adjustments in insulin dose and insulin injection. Additionally, successful intensive diabetic management requires response to a variety of external factors including changes in diet, exercise, and presence of infection.

Typically, patients self-monitor their blood glucose via fingerprick in an effort to optimize glycemic control, however, this technique is tedious and uncomfortable for the patient. In addition, this technique only provides information about a single point in time making it difficult to recognize trends. In any case, intensive glucose monitoring and insulin therapy can be challenging as they require obtaining, retaining, processing and applying vast amounts of information in the course of everyday life (Watkins, Connell et al. 2000; Boland, Monsod et al. 2001; Brauker 2009).

Evolving technologies such as continuous subcutaneous insulin infusion (CSII), and continuous glucose monitoring (CGM) have allowed patients to safely maintain glycemic goals and prevent other related complications. While there is evidence to support the efficacy of CSII (Misso, Egberts et al. 2010), the reliability and robustness of CGMs leaves much to be desired. Even with the aid of these devices, maintaining blood glucose concentrations within a suggested optimal range is a constant struggle.
Most recent technologic advancements have integrated these components into an Artificial Pancreas Device System (APDS). In addition to CSII and CGM, the APDS incorporates a control algorithm designed to facilitate communication between the different components thus automating the process of maintaining blood glucose concentrations at or near a specified target or range and, ultimately, improving glucose control, preventing complications, and decreasing disease burden. With a wide range of current products available on the market, there is potential for a large variety of different types and designs of ADPSs.

In an effort to help advance the development of the diabetes technologies, the U.S. Food and Drug Administration (FDA), in 2011, established three new product classifications for APDSs including threshold suspend, single hormonal control, and bihormonal control, all of which are regulated as class III device systems (general controls and premarket approval). In September of 2013, Medtronic’s MiniMed® 530G was the first system approved under this new product classification. ADPSs have not previously been reviewed by the Medical Technology Assessment Committee (MTAC) and are currently being reviewed due to provider request.

The development of an “artificial pancreas” has been the “holy grail” for management of Type 1 diabetes for several decades. To understand why this is such a difficult task it helps to understand what the normal non-diabetic person’s body actually does in response to changes in blood glucose. Within the pancreas we all have 1-2 million groups of cells called the Islets of Langerhans which function together to help maintain the blood glucose levels within a quite narrow range (of around 70-160mg/dl). The islets make two main hormones (insulin from the beta-cells and glucagon from the alpha cells) which work together in concert. These islet cells monitor the blood glucose flowing through them constantly. Whenever the blood goes up (after a meal, for example) the islets increase the amount of insulin that they are secreting from the beta-cells and decrease the amount of glucagon that they are secreting from the alpha cells. Whenever the blood glucose drops below normal the beta-cells turn off completely (so that no insulin is secreted) and the alpha cells crank out lots of glucagon. Glucagon (as well as other hormones like epinephrine, growth hormone and cortisol) stimulate the liver to release glucose into the blood stream (the liver stores about 300 grams of glucose in the form of a kind of starch called glycogen). The insulin and glucagon are released directly into the portal circulation of blood flowing from the pancreas to the liver. In other words, a non-diabetic person is functioning with millions of blood glucose measurements being done every day with the results connected to a continuously variable secretion of both insulin and glucagon released directly into the blood flowing to the liver. Even though the commercially made components of an “artificial pancreas” may seem very sophisticated they are a very crude and imprecise way of trying to do what the real non-diabetic person’s pancreas can do.

First consider the delivery of insulin. Rather than having both insulin and glucagon being released directly into the blood flowing to the liver we have a continuous subcutaneous infusion of insulin alone. The insulin is absorbed out of the subcutaneous fat into the peripheral systemic circulation and only then gets to the liver. This can give a fairly accurate and stable basal delivery of insulin but when larger amounts of insulin are delivered immediately before meals (bolus insulin delivery) the rate of rise and fall of insulin in the bloodstream is a lot slower than in a healthy non-diabetic person’s body.

Second, consider the measurement of blood glucose. Typically diabetic patients test the capillary glucose level in their fingertips 2-8 times per day. This can give useful information but does not show the constant rising and falling of blood glucose excursions throughout the day. If needle sensors are placed in the subcutaneous tissue this can give a reading of interstitial fluid glucose (similar to plasma glucose) every 10-20 minutes throughout the day and so can show the trends as the blood glucose rises and falls. Several companies now make these continuous glucose monitoring systems (CGMS). There are two practical issues with CGMS, however: a) the interstitial fluid glucose lags behind the actual plasma glucose by 15-20 minutes and so can give a falsely low or high value if it is measured at times when the blood glucose is rising rapidly (after a meal) or is falling rapidly (after exercise or after injecting a bolus of insulin), and b) the glucose oxidase enzyme system for measuring blood glucose can drift over time and so the readings from a CGMS will be inaccurate unless they are calibrated several times a day by doing a capillary blood glucose test at a time when the blood glucose is expected to be stable (not rising or falling rapidly).

The concept of an “artificial pancreas” is that a person could wear both an insulin pump and a CGMS device and that the insulin pump uses the information from the CGMS to automatically make adjustments to the rate of insulin infusion. The person would not need to worry about testing their blood glucose or of thinking about what they eat and when they exercise but could go about their day-to-day life safe in the knowledge that their blood glucose would stay within normal limits. It is because of the practical limitations of the technology (outlined above) that we are still a long way away from that idealized situation.
Medical Technology Assessment Committee (MTAC)

Artificial Pancreas

02/14/2014: MTAC REVIEW

Evidence Conclusion: In this review, the results of four RCTs were included. One of these studies compared sensor-augmented insulin pumps to multiple daily insulin injections while two of them compared threshold suspend systems with standard insulin pumps. The last study compared two closed-loop algorithms to patient self-control with CSII. Effectiveness: Comparison of the effectiveness of sensor augmented pump therapy versus multiple daily injections (MDI) was examined in a one year multicenter, randomized and controlled phase of the sensor-augmented pump therapy for hemoglobin A1C reduction (STAR-3) study. Compared with 241 subjects on MDI, those on pump therapy (n=244) experienced greater reductions in A1C levels by three months, with the trend continuing throughout the remainder of the study. By the end of the study, the baseline A1C level (8.3% in the two study groups) had decreased to 8.1% in the MDI group compared with 7.5% in the pump therapy group ($P<0.001$). Participants were offered an optional six-month continuation phase which allowed subjects in the pump therapy group to continue therapy and allowed subjects in the MDI group to cross over to pump therapy. The continuation phase resulted in a sustained lower mean A1C value for patients in the pump therapy group and decreased the mean A1C values to 7.6% ($P<0.001$) among MDI subjects who crossed over to pump therapy for the continuation phase. (Bergenstal, Tamborlane et al. 2010; Bergenstal, Tamborlane et al. 2011). See Evidence Table. In the three-month automation to simulate pancreatic insulin response trial (ASPIRE), 247 patients with type 1 diabetes and nocturnal hypoglycemia were randomized to sensor augmented insulin pump therapy with the threshold suspend feature (Paradigm group) or to the standard sensor-augmented insulin pump therapy (control group). The primary efficacy outcome was the area under the curve (AUC) for nocturnal hypoglycemic events. At the end of three months, the mean AUC for nocturnal hypoglycemic events was found to be significant through supportive analysis at 37.5% lower in the Paradigm group than in the control group ($P<0.001$) (Bergenstal, Klonoff et al. 2013). See Evidence Table. In another trial, 95 adults and children with type 1 diabetes were randomized to use of a sensor-augmented insulin pump with threshold suspension or a standard insulin pump. After six months, the combined incidence of moderate and severe hypoglycemic events was significantly lower in patients using the pump with the threshold suspension compared with the standard insulin pump (9.5 vs. 34.2 per 100 patient-months) (Ly, Nicholas et al. 2013). See Evidence Table. Most recently, Luijf and colleagues compared two validated closed-loop algorithms versus patient self-control with CSII in terms of glycemic control. The investigators concluded that both the algorithm developed by the University of Cambridge (CAM) and the algorithm developed by the University of Pavia, Padova, University of Virginia and University of California Santa Barbara (international artificial pancreas [IAP]) provide safe glycemic control. This study, however, occurred in a highly controlled environment for short periods of time. While the algorithms may have the benefit of less time in hypoglycemia, this came at the expense of higher mean glucose values when compared to self-management (open loop) and thus, more time spent in hyperglycemia (Luijf, DeVries et al. 2013). See Evidence Table.
Safety and Adverse Events: Safety and adverse events were included as endpoints in two of the four selected studies. In the STAR 3 study, data on adverse events were collected at each follow up clinic visit. Severe hypoglycemia was defined as an episode requiring assistance and was confirmed by documentation of a blood glucose value of less than 50 mg per deciliter (Bergenstal, Tamborlane et al. 2010). In the ASPIRE study, the primary safety endpoint was the change in glycated hemoglobin level. The change in the glycated hemoglobin level from randomization to study end was not significant in both groups, and the difference in hemoglobin level between groups was only 0.05 percentage points. Beyond that, no episodes of diabetic ketoacidosis occurred in either group and no severe hypoglycemic events occurred in the Paradigm group. During the study phase there were seven adverse events thought to be related to the study device which included skin irritation and device malfunction resulting in severe hyperglycemia (Bergenstal, Klonoff et al. 2013). Generally speaking, the studies had the advantage of randomization and control, however, the lack of blinding makes the evidence vulnerable to bias. In addition, the Ly et al. study relied on patient recall for their results and some of the experimental subjects may have had more contact with physicians opening up the results to recall and observation bias. Sample size ranged anywhere from 48 to 495 participants and most of the studies, with the exception of the STAR 3 Trail, did not report on the racial and ethnic composition of the study samples, and for those that did, participants were predominantly white. Furthermore, inclusion criteria were extremely selective with few studies including children younger than 12 years. In the same way, the data lack generalizability because management was limited to expert settings and among highly motivated patients. Further limitations include heterogeneity in definitions of hypoglycemia and short duration of follow-up ranging anywhere from 24 hours to 18 months. With many complications of diabetes developing over many years it would be ideal to see results allowing for multiple periods of sensor wear and to evaluate changes in subject needs over time. With that said, at the current point in time, APDSs are a rapidly evolving technology that should only be considered in select patients.

Conclusion: The results of the published studies suggest that APDS may be effective in reducing hypoglycemia in highly selected, motivated and compliant groups of individuals. There is some evidence to support the safety of APDS in highly compliant adult patients.

The use of Artificial Pancreas does meet the Kaiser Permanente Medical Technology Assessment Criteria.